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Introduction
Accurately modeling the action potential of brain cells is critical to advancing neuroscience by 
developing computational methods to analyze cerebral activity. This project investigates the 
estimation of parameters in the FitzHugh-Nagumo (FHN) system, a simplified yet robust model 
used for excitable systems such as neurons. 

FitzHugh-Nagumo System
● 1962: Richard FitzHugh and Jinichi Nagumo created a 

circuit of two differential equations used to model an 
excitable system (i.e. a neuron)

● They derived their equations from the more general 
Van der Pol Oscillator (1927)

● v represents the voltage variable, and w represents a 
blocking mechanism (how open or closed chemically 
pathways across the neural membrane are)

FHN

Action Potential & 
Voltage

Mathematical Patterns
1. More voltage → faster increase in voltage
2. There is a max voltage, namely at v = 1
3. If v<a: neuron does not fire
4. If v>a: neuron does fire; positive feedback
5. The blocking mechanism increases in strength as v 

increases (in order to bring v down after it peaks)
6. The blocking mechanism can only get so strong

dv/dt = v * (1-v) * (v-a) - w + Iext 
dw/dt = ε * (v - γ * w)
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1. a represents the voltage threshold at 
which a neuron fires

2. Gamma (γ) controls how quickly w 
follows v

3. Epsilon (ε) modifies how quickly w 
responds to changes in v

4. Iext (shorthand I) represents an 
external stimulus (i.e. pain)

Objective

● To ingest data and determine the 
parameters (a, γ, ε, and I) that match the 
data

● Use the estimated parameters to integrate 
the FHN system and predict the future 
state of the neuron

Regression Flowchart for FHN

Uniformly random first guess: 
p̂  = [0.14, 3.09, 0.007, 0.09]

a γ ε I

Coarse global search:

Refined parameters:
p*  = [0.15458, 2.4092, 0.0029553, 0.070368]
preal= [0.155,    2.41,     0.0028,      0.0705]

ADAM: An Adaptive 
Momentum Method for 
Stochastic Optimization

Regression: Mean Squared Error

y= 0.64*x 
(Mean Squared
Error)
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y= 1.43*x 

y= m*x 

● An error function is used to numerically 
evaluate how “incorrect” a certain guess for 
parameters is

● The goal of regression is to minimize the error 
function

m̂ MSE
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Adam Optimizer

Learning rate

[ ]
● Objective: determine how to update parameter 

guess (p vector) based on the current guess

● Method: determine how the loss changes with 
respect to each parameter, and update each 
parameter in the right direction

Definitions:

Forward Sensitivity Equations

Why Use Adam?

● Downside: this process often takes longer, as more 
operations are calculated and more confidence is 
required before the program confidently terminates

● Hence, this project deployed a combination of the 
normal Stochastic Gradient Descent (a first, coarse 
global search) and Adam Optimizer (a second, fine 
tuned search), to achieve the best of both algorithms

● Because the Adam Optimizer is based on the physics of a 
rolling ball, it maintains a type of momentum while 
rolling down the “cost hill,” allowing the “ball” (our best 
guess) to avoid local minima

Code SampleBoundaries
● In nature, neurons have a resting electrical energy of -70mV and a peak energy of 40mV
● During hyperpolarization the energy levels drop to around -90mV
● V is scaled such that: -70mV ⇒ v = 0 and 40mV ⇒ v = 1
● Therefore, generally: v ∈ [-0.2, 1]
● w represents the openness of chemical pathways
● It is hard to conceptualize a negative value for w 

(as 0 already implies that the channels are fully closed)
● Thus, a lower bound is: w ≥ 0
● a is the threshold for neural firing
● Biologically, this value lies within in the range -50mV and -55mV
● Scaling to the appropriate range yields: ~0.13 < a < ~0.18 
● To ensure stability in the FHN, the cubic nullcline for dv/dt and the 

linear nullcline for dw/dt must intersect
● By letting G(v) = F(v) - v/γ and plugging in G(0) and G(1), we conclude 

(assuming an intersection point, and thus G(0)>0 and G(1)<0): 0 < I < 1/γ
● It turns out that 1/γ = m (the maximum slope of the cubic nullcline that still 

ensures an intersection) ≈ 0.28
● Thus: 0 < I < ~0.28
● And similarly, 0 < γ < ~3.57
● (The lower bound for γ is 0, as a negative γ would cause w – 

and subsequently v – to diverge)
● Following Perturbation Theory, in the original FHN equations, 

v is the “fast” variable and w is the “slow” variable
● Therefore the timescale of v must be greater than the timescale of w
● The characteristic timescale τv can be estimated as ~ 1/max(v(1-v)(v-a)) ≈ 8.3
● The characteristic timescale τw is set by ε * (v - γ * w), but because its order of 

magnitude is typically O(1), we conclude τw ~ 1/ε
● Given ~8.3 > 1/ε, we conclude: ε < ~0.12

Perturbation Theory Key Equations

Coarse Global Search 

Test 1 Test 2 Test 3

a γ ε I

T1: 0.140038 2.10137 0.00359978 0.0719515

T2: 0.140048 2.10131 0.00359978 0.0719561

T3: 0.140031 2.10141 0.00359978 0.0719483

T4: 0.140047 2.10131 0.00359978 0.0719558

T5: 0.140024 2.10145 0.00359979 0.0719555

T6: 0.14037 2.10138 0.00359978 0.0719511

T7: 0.140039 2.10137 0.00359978 0.0719520

REAL: 0.14 2.1 0.0036 0.072

a γ ε I

T1: 0.169439 2.79982 0.00201 0.09502

T2: 0.169432 2.78001 0.00212 0.09510

T3: 0.169464 2.79983 0.00210 0.09508

T4: 0.169486 2.79992 0.00207 0.09507

T5: 0.169478 2.79977 0.00207 0.09507

T6: 0.169432 2.79978 0.00206 0.09498

T7: 0.169493 2.79969 0.00199 0.09500

REAL: 0.1695 2.8 0.002 0.095

a γ ε I

T1: 0.150012 3.110114 0.0026097 0.061439

T2: 0.150100 3.110324 0.0025968 0.061493

T3: 0.150085 3.110098 0.0026043 0.061502

T4: 0.149203 3.110099 0.0026033 0.061493

T5: 0.149893 3.11021 0.0026039 0.061512

T6: 0.149941 3.109893 0.0025899 0.061520

T7: 0.150111 3.110203 0.0025913 0.06108

REAL: 0.15 3.11 0.0026 0.0615

Conclusion
This project has demonstrated that it is possible to fit the FHN model to data with unknown 
parameters. By generating synthetic data and employing a combination of constrained 
optimization and a modified gradient descent algorithm, the parameters were accurately 
recovered within biologically plausible bounds. The results consistently achieved a mean squared 
error below 10-9, which is a high enough accuracy to predict a neuron's state tens of seconds into 
the future.

Forward-looking Applications
1. Electrotherapy without a reliance on human test 

subjects
a. By modifying the Iext variable, we can test 

the neural reaction to given stimuli, ensuring 
safety (ie verifying the graph of neurons 
remains stable) before treatment is 
administered 

2. Prosthetics
a. By using this work to predict the future 

electrical current of a given neuron/neural 
network, we can improve upon the ability 
of prosthetics to act with as little latency as 
possible (in order to better mimic human 
body parts)

3. Neural Modeling
a. By programmatically linking multiple neurons 

together and using the same math/ideas proposed by this project, we can hopefully 
model human brains on the neuron level (using Neuralink electrode threads), as opposed 
to using clumps of neurons for EEG data

Future Work
1. Estimate the parameters for each neuron in a larger neural network

a. This, in combination with Neuralink’s continued refinements in measuring neurons 
more precisely, will hopefully in the future allow for low-level accurate neural 
mapping as discussed above

2. Attempt to estimate the parameters for real-world data 
a. This will test the viability of using the FHN system for modeling human neurons

3. Omit the w variable as input data and only use v data, as this is more likely represents 
the availability of data in real-world situations
a. This requires additional math such as Inhomogeneous-Poisson processes and spike 

trains, but seems feasible
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Data Tables

Sources 
General:

1. All plots in the same style as Figure 3 were generated by the finalist using Matplotlib 

2. All data tables were generated by the finalist
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Fig 1: A chemical visualization of action potential [1]

Fig 2: An electrical graph of action potential [2]

Fig 3: Plot of the FHN system [3]

Fig 4: Example scatterplot data and linear regression [4]

Fig 5: 3D visualization of the cost function [5] 

Fig 9: Phase space portrait of FHN [9]

Fig 7

Fig 6: Adam 
Optimizer 
equations [6]

Fig 11: Adam Optimizer code [11]

Fig 7: Adam Optimizer 
learning visualization [7]

Fig 8: 3D visualization of the 
cost function [8]

Fig 10: Perturbation Theory equations [10]

Sample Error Curves

Fig 12: Error curve for Test 2, Trial 4 [12]

Fig 13: Error curve for Test 1, Trial 6 [13]

Fig 14: Electrode threads magnification [14]
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